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Abstract. Several models for the dynamic growth of percolation clusters, or ’diffusion 
percolation’ ( D P ) ,  are introduced and analysed. In these models a random walker (an 
‘ant’) walks on percolation clusters (which are occupied with initial site concentration, p , ) .  
The ‘ant’ is allowed to step off such clusters and add new sites to them if  certain conditions 
are met. Some of these models are shown to have a one-to-one correspondence with models 
of bootstrap percolation ( B P ) ,  in which sites which do not have a required number of 
neighbours are successively culled. (For concentrations p of occupied sites greater than 
some threshold P < ( B P )  there will be an infinite cluster in the B P  model.) The growth 
(shrinkage) continues until no more sites can be added (removed). The present paper 
concentrates on  the infinite time limit ( I  --f % j  of diffusion percolation, in the case where 
at least one ‘ant’ was initially on each cluster. There exists a threshold ~ T ( D P ) ,  so that at 
f + c c  there exists no infinite connected cluster i f  p, <pT ( D P ) .  We show that p T ( D P ) Z  

1 - P , ( B P )  (for the corresponding B P - D P  pair of models in two dimensions), with equality 
for self-matching lattices, such as the triangular lattice. For some systems p T ( D P )  is 
extremely small, or even zero. The transition is found to be either second order, with the 
usual percolation exponents (within the error limits), or first order, with l / u  = dimension, 
where U is the correlation length critical exponent. We have carried out extensive numerical 
simulations for several systems. In two and three dimensions, we fail to observe the 
expected crossover to 1/ U = dimension. However, we see indications of this crossover in 
four dimensions. Two new percolation thresholds have been calculated for two diffusion 
percolation models on the square lattice. Both of these are larger than [ 1 - pc( BPI]  = 0.4073 
(for the corresponding bootstrap cases), in agreement with our  inequality. 

1. Introduction 

Flow of fluids in porous media is clearly a subject of much scientific and technological 
significance (leading, e.g., to a better utilisation of oil from rocks). A full understanding 
of this flow involves first the study of the static geometry of the connected pores, and 
then the study of the dynamics of the flow on that geometry. I n  many cases, the 
geometry is also changing via a dynamic process, e.g., by fracture. 

Much of the scientific understanding of flow in porous media has been based on 
percolation theory (Stauffer 1985, Aharony 1986). A typical percolation model places 
conducting and insulating bonds on a lattice, with random occupation concentrations 
p and (1 - p ) .  For infinitely large samples, there is a sharp transition from an insulating 
to a conducting phase, at the percolation threshold p c .  At p < p c  there exist only finite 
conducting clusters, with an average size that diverges as p + p i .  At p > p c  there also 
exists an infinite conducting cluster. The bonds can be used to model pores or cracks 
in rocks. 

0305-4470/88/061387 + 18$02.50 0 1988 IOP Publishing Ltd 1387 
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Above p c ,  fluid can pass through the entire rock and, when sufficient cracks are 
present in the rock sample, fragmentation can occur. The nature of the transition at 
the percolation threshold and of the geometry of these clusters for random occupation 
is now well understood, and significant progress has also been made towards the study 
of flow dynamics (see Aharony (1986) for general results and Englman and Jaeger 
(1986) for a review of percolation applications to the modelling of cracks in rocks). 

There has, however, been relatively less progress in the study of percolation 
processes where the geometry is changing via a dynamic process. These models can 
either be viewed dynamically or sampled at some particular time frame and considered 
to be a correlated percolation process. 

We have developed a new set of models for the dynamic growth of percolation 
clusters. These models are motivated by the need to model crack growth for the case 
where the nature of the growth depends on the local environment. We call these 
models ‘diffusion percolation’ (DP)  and introduce them below by example. 

The models are given the name DP because crack growth is generated via ‘ant’ 
motion. The ‘ant’ approach to the conductivity problem on percolation clusters was 
developed by de Gennes (1976). It is a locally definable alternative to the solution of 
Kirchhoff’s equations which require knowledge of the entire system at each step. Here 
we propose it as a local alternative to the elucidation of crack development by the 
solution of equations that require input from the entire system. We believe that these 
models are a useful first step in an attempt to understand percolation processes where 
the geometry is changing via a dynamic process. Our models are developed in the 
language of site rather than bond percolation for ease of definition and study, but 
equivalent (if more clumsy) bond processes can easily be derived. A bond picture is, 
of course, more natural for crack visualisation. 

Consider a square lattice, where each site is occupied with probability p I ,  and 
parachute ‘ants’ (which can diffuse from one occupied site to a neighbouring occupied 
site) onto some fraction of the occupied sites. These ants are independent of each 
other. We may visualise them as being parachuted sequentially: each one moving until 
no further useful movement can be achieved. 

Consider further the configuration of figure l ( a ) .  If an ant at site i contemplates 
stepping onto the vacant site m, we may define rules that allow it to do so under certain 
conditions, for example if either of the sites j and k are occupied and it has tried, say, 
five times to step onto m. (These conditions are motivated by fluid flow in a cracked 
rock, where after some time has passed fluid succeeds in breaking through previously 
closed channels if there is a weakness in the surrounding rock.) Once an ant has 
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Figure 1. ( a )  Occupation of new sites in s2n DP. ( b )  Occupation of new sites in o2n DP. 
0, occupied site; 0, vacant site. 
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stepped onto a site we treat this site as occupied and add  it to the pre-existing clusters. 
In this process any site which has two neighbours that are second neighbours of each 
other will become occupied if an ant is parachuted onto the cluster containing one of 
these neighbours. We call this process s2n DP, where 2n stands for two neighbours 
needing to be occupied before the new site can be occupied and  s stands for these 
two neighbours being on the same side of the site in question. 

Alternatively (figure l ( b ) ) ,  we could allow the ant to step onto m if site I is occupied 
(leading to occupied clusters that grow along the direction of the ant’s travel, similar 
to crack development along weak lines of a rock). We call this 0211 DP (0 for opposite). 
This particular variant is probably the most relevant to crack development in real 
rocks. There is evidence (Englman and Jaeger 1986) that cracks develop further along 
weak lines of a rock and  development along the direction of ant travel mimics this. 
Details of these and other DP models will be given in § 2, but we note here that in the 
s2n case any cluster onto which an  ant has been parachuted will take a compact 
rectangular shape at t =CO. In the 02n case clusters will not become compact. The 
necessity of several attempts prior to occupation is reminiscent of noise reduction in 
diff ustion-limited aggregation (Nittmann and  Stanley 1986). Noise reduction in DLA 

has the general effect of smoothing and leading to clusters that grow more slowly but 
more regularly. A similar phenomenon is expected here for short timescales. For 
longer times the noise reduction effect is less relevant for our model because returns 
to previously visited neighbourhoods near the origin of the motion are more likely 
than for DLA. 

We have studied the time development of clusters with these and other rules 
governing the ants’ behaviour, but detailed considerations of the nature of the time 
development will be deferred to a second paper. In the present work we will mainly 
concern ourselves with the ‘infinite time limit’, and with the limit where sufficiently 
many ants are parachuted onto the sites, so that at least one falls on every cluster. 
There are two interesting aspects of these limits. One is the study of the models where 
the clusters become compact and  analytic results can be developed. (This aspect does 
not concern the 02n case which is potentially more relevant to crack development. 
However, the knowledge gained from comparisons between numerical and analytic 
studies of the compact cases is extremely important for the development of simulation 
techniques for all DP models. The o2n model will receive further attention based on 
this knowledge in our second paper.) The second aspect is that in the above-mentioned 
limits we can obtain a one-to-one correspondence between certain D P  and bootstrap 
percolation ( B P )  models (Kogut and Leath 1981). A summary of recent and new 
bootstrap percolation results is given in appendix 1. We suggest that the reader who 
has not previously encountered B P  look at this appendix before reading § 2. In § 2 we 
introduce the various diffusion percolation models and present exact results concerning 
these systems and  their relationship with bootstrap percolation. We show that many 
of the diffusion percolation models have first-order transitions, and in some of these 
cases we adapt Straley’s B P  (Kogut and Leath 1981) large void instability argument to 
show that p c  = 0. For D P  we call the equivalent cluster instability a Lifshitz-Griffiths- 
Straley ( LGS) instability. 

To complement our exact results we have carried out extensive numerical simula- 
tions of several DP and B P  models. We have, in particular, studied those models where 
we expect first-order transitions to be present. We expect that 1 /  v = d in these cases, 
and develop exact results for B P  on certain finite systems to justify this assumption in 
appendix 2 .  We observed 1/ v = d in four dimensions only, probably because the 
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crossover at lower dimensions is very slow. The simulation results are presented in 
0 3. In addition to the study of the first-order transition, new p *  values for various DP 

models have been obtained. A discussion of the implications of these results is given 
in 0 4. A summary of the different models discussed in this work is given in table 1, 
with cross reference to the definitions and correspondences. 

Table 1. Summary of models discussed in this paper. 

Diffusion Corresponding 
percolation bootstrap 
modelt case$ Figure PT(DP) P c ( B P )  

Square lattice 
s2n 
02n Model of 

a l n  
a2n 
a3n 
a4n 

de Alcantara Bonfim 
and Engelsberg 
(1986) 

0 m = 4  - 
m = 3  2-5 0 
m = 2  7 0.423 
m = l  7 0.551 

Triangular lattice 
a l n  m = 6  
a2n m = 5  
a3n m = 4  
a4n m = 3  
a5n m = 2  
a6n m = l  

6 0 
6 0 
6 0 
6 0.628 
- 0.5 

0.5 - 

1 
1 
0.5927 
0.5927 

1 
1 
1 
0.372 
0.5 
0.5 

t s = same side, o = opposite side, a = any, n = neighbours. 
$ m is the number of neighbours that must be occupied. 

2. Exact results for diffusion percolation and its relation to bootstrap percolation 

We assume that the reader who is unfamiliar with bootstrap percolation has taken a 
moment to glance at appendix 1 prior to reading this section. We also refer the reader 
to table 1 where a summary of the models discussed in the appendix and in this section 
is given. In this section we develop a one-to-one correspondence between BP and DP 

models, beginning for illustrative purposes with the case of m = 3 BP on the square 
lattice and a DP model on the square lattice that we call a2n DP. The a2n DP is a simple 
composite of the two cases introduced above. Consider (figure 1) the case where the 
ant at site i is allowed to step onto site m if any of i, k or 1 are occupied. In other 
words, at t =CO, if at least one ant is parachuted to each cluster, all sites that have any 
two neighbours occupied will become occupied. The clusters will be compact, as in 
the s2n case, and this is strongly reminiscent of bootstrap percolation for m 2 mu. For 
simplicity, let us allow ants to occupy new sites at their first attempt. Consider figures 
2 and 3 for the illustration of the development of compact clusters in a2n DP: any 
occupied site i that has (figure 2) one or more of its neighbours p, q, r or s occupied 
(say p and q for example) will eventually become part of an occupied rectangle. 
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0 0  0 0 0 0  0 0  0 
5 r 5 r s r 

(a )  lbl ( c )  

Figure 2. Occupation of new sites in s2n or a2n DP. If there is an ant at site i at t = O  ( a )  
then at some time t '  ( b )  it will reach site b and by f = cc (c )  will have reached both b and 
C. 

" . . .  

' i' 
i 

. . .  

. . . .  

. . . a .  

lb) (d I 
Figure 3. The joining of four distinct clusters to form one compact cluster in a2n DP. ( a )  
f=O, ( b )  f = t ' ,  ( c )  t = f " ,  ( d )  (=a. 

Similarly, if there is an  ant at  site i at t = 0, the configuration of figure 3, which initially 
consists of four distinct clusters, will consist of only two clusters at  t = t ' ,  when the 
ant has reached site j. At t = t" there will be one cluster only, which will become 
compact at  t = co. The paths indicated are just one possible choice; the actual path 
taken will probably double back on itself many times. In fact, in order for a L x  M 
cluster that has an  ant on it not to grow to engulf the entire lattice, it must have a 
border (figure 4) of (4L+4M+4)  vacant sites around it. ( In  the s2n case, a border 
of (2L+2M +4) vacant sites is required.) This requirement for a cluster not to grow 
is identical with the requirement for a void not to grow in m = 3 BP on the square 
lattice (see appendix 1, where we recall Straley's argument from Kogut and  Leath 
(1981)). By the inverse of Straley's argument, as the cluster becomes larger, the 
probability for all 4L + 4M + 4(2L+ 2 M + 4) sites to be absent is vanishingly small. 
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x o e e e o  
M 

0 0 0 0 0  

x x x  

Figure 4. Illustration of conditions required to prevent growth of a large unstable cluster 
in a2n, o2n and s2n DP. 0, Occupied sites; C, sites that must be vacant if s2n and a2n D P  
clusters cannot grow; x ,  sites that must be vacant if a2n and 02n D P  clusters cannot grow. 

If ants are parachuted onto all clusters then, unless pI = 0, the ants will eventually 
cover the entire lattice. We define the percolation threshold for this problem, p : ,  as 
the value of p z  below which percolation will not occur at t =cc if ants are parachuted 
onto all clusters, By the above argument we see that pF(a2n DP) =pT(s2n DP) = 0 =  
1 - p c ( m  = 3 BP)t. 

Thus we see that there is a connection between a2n DP and m = 3 BP on the square 
lattice. We now complete the identification by showing that a2n DP and  m = 3 BP are 
dual to each other. Let us consider any particular realisation of an  a2n DP process on 
a lattice with L2 sites with some p ,  and some initial configuration C of the p,L2 occupied 
sites. Let us make the transformation occupied f, vacant, and  consider the initial 
(before culling) configuration of a m = 3 bootstrap process, where, by the transforma- 
tion, the initial concentration of occupied sites is given by pI ( m  = 3 BP) = 1 -pl(a2n DP). 

We shall motivate our general example by considering the transformed (figure 5 )  
version of figure 3. We require in a m = 3 BP that each occupied site have three occupied 
neighbours in order to remain occupied. Therefore (see figure 5 ( t  = 0)) sites (3 ,3) ,  
(4,2),  ( 2 , l )  and  (3,O) will be unsatisfied and become vacant. Once these are vacant, 
at t = t"', sites (3,4 ), (4, l ) ,  (2,2) and (1, 1) will be unsatisfied and  become vacant. 
Finally, at  t = 0;) all the sites with x > 1 and  y < 5 will be vacant. Just as above, the 
condition for a void in a m = 3 bootstrap not to grow is identical with that for a cluster 
in DP. We can see that this bootstrap vacancy cluster is identical to the diffusion cluster 
that develops from the same starting configuration. In general, any vacancy cluster in 
the m = 3 bootstrap grows until all surrounding sites have three occupied neighbours 
and any occupied cluster in an  a2n diffusion percolation that has an  ant parachuted 
onto it grows until all surrounding sites have three vacant neighbours. Thus, for any 
initial configuration C of occupied/vacant sites, if ants are parachuted onto every 
cluster present at t = 0 in the diffusion process, the configuration of vacant sites in the 

+ W e  note that this argument does not apply for o2n DP, because the presence of a single site in the outer 
x collar would necessitate the occupany of only  one additional o site and not an entire row, as in the a2n 
or s2n cases. Thus there is no engulfing of the lattice but merely some local change. We observe that 
pT(o2n) is smaller than or equal to the critical concentration of the percolation problem where all nearest 
and third neighbours are connected. This value is 0.338*0.040. 
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6 m a a . a  6 a a a . a  6 * a a a a  

5 . o . * *  5 a e . a .  5 . O O O O  

4 . . . . 0  4 . . . . 0  4 . 0 0 0 0  

3 . * * * Q  3 m * * o o  3 . o o o o  

2 . e . o .  2 . . . 0 0  2 . 0 0 0 0  

l a a o o e  1 . 0 0 0 0  1 . . . o .  

Y Z O .  0 0 Y = O .  0 0 0 Y = O .  0 0 0 0 

x=o 1 2 3 4 x=o 1 2 3 4 x-0 1 2 3 4 
(0) I b )  IO 

Figure 5. The joining of distinct holes in an occupied cluster to form a compact hole in 
m = 3 BP. Note that the initial configuration of vacant sites is the same as the initial 
configuration of occupied sites in figure 3 and likewise the final configuration of vacant 
sites is the same as the final configuration of occupied sites in figure 3 .  ( a )  r = 0 ,  ( b )  r = t " ' ,  

( c )  t =a. 

m = 3 BP is identical to that of occupied sites in the a2n diffustion process. Therefore, 
there is a one-to-one correspondence between the two models. 

The correspondence between m = 3 BP and a2n BP can be generalised for other BP 

and DP processes. For o2n DP, the corresponding BP is related to a model introduced 
by de Alcantara Bonfim and Engelsberg (1986). The s2n DP process on the square 
lattice does not seem to be related to any BP process previously studied. A similar DP 

process can be defined on the triangular lattice and is related to self-neighbour BP on 
the triangular lattice (Adler eta1 1987). The diffusion percolation analogue of the 
m = 4  bootstrap on the square lattice is the rule that all neighbours of an occupied 
site become occupied (called a l n  DP). The analogue of m = 2 BP on this lattice is that 
(figure 1) site m can become occupied only if any two of j ,  k and 1 are occupied 
(a3n DP), and the analogue of the m = 1 bootstrap is that m can become occupied only 
if j ,  k and 1 are occupied (a4n DP). 

We may also consider the triangular lattice, figure 6. The case where any neighbour 
of an occupied site, i, will become occupied (a ln)  is equivalent to the m = 6 bootstrap. 
The case where m can become occupied if any one of k, p ,  q, n , j  are (a2n) is equivalent 
to the m = 5 bootstrap. When any two of k, p ,  q, n, j must be occupied we have a3n 
diffusion, which is equivalent to the m = 4 bootstrap. Just as for a2n on the square 
lattice, a ln ,  a2n and a3n (triangular) DP clusters will be compact. In order for these 
compact clusters not to grow, a large border of vacant sites around the cluster will be 
required. If  ants are parachuted onto all clusters, p T = O ,  just as p ?  = 1 for the 
corresponding bootstrap process. 

We now come to the dual of m = 3 triangular BP. This is the (a4n) DP process, 
where the ant can move from i onto m if three of k, p ,  q, n and j are occupied. If 

0 
/ m  k / 

0 
4 

0 
J 

0 

Figure 6.  Occupation of nev. sites on the triangular lattice 
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ants are placed on all clusters in this process, then at t = CO the only vacant sites will 
be those with three or more vacant neighbours; if there were less vacant neighbours 
there would be four or more occupied ones and the site would be occupied. There 
will therefore be percolation of vacant sites across the lattice if q? = (1 - p ? )  3 
pc( m = 3 BP). Since the triangular lattice is a planar graph with triangular faces, and 
therefore the site problem is self-matching (Essam 1972) on this lattice, there is always 
percolation of either occupied sites or vacancies. Therefore, if the vacancies do not 
percolate the sites must and therefore if q? s p C (  m = 3 BP) we have percolation and 
thus p ?  = 1 -pc(  m = 3 BP). An alternative demonstration of this result is by a consider- 
ation of the term by term graphical expansion of k ( p ,  L ) ,  the mean number of clusters 
per site for the m = 3 bootstrap, and k ( q ,  L*) the mean number of clusters per site for 
the a3n diffusion problemt. These two expansions are identical in terms of p and q 
and thus k ( p ,  L )  = k ( q ,  L*).  If we assume that there is only one singularity in each 
case, and since L =  L* for the triangular site (TS) lattice, we have pT(a4n DP) = 
1 - p c ( m  = 3 BP). A similar result holds for a5n and a6n diffusion (corresponding to 
m = 2 and m = 1 bootstraps). Here vacancies can percolate, if q, > p c  (TS percolation), 
since p c  ( m  = 2 and m = 1 bootstraps) = p c  (TS percolation), and therefore occupied 
sites can percolate if q! < 0.5 or if 1 - p ,  < 0.5 or p ?  = 0.5. 

For the square lattice analogues of the m = 2 and m = 1 bootstraps we do not find 
p ?  = 1 - p c  (square site ( s s )  percolation). We have vacancies percolating for q, a p c  ( s s  
percolation) but since the lattice is not self-matching, absence of vacancy percolation 
does not imply percolation of occupied sites. All we can say is that for some q, a 0.5927 
(Rappaport 1985) we have percolation (i.e. for some 1 - p I  s 0.5927) and thus p ?  2 
0.4073. It is quite obvious that in the square case pc(a3n) # pc(a4n), even though the 
p c  of their bootstrap analogues are identical. This is because while the lack of dangling 
bonds and isolated clusters in the M = 2 and m = 1 bootstraps does not affect the 
connectivity of the lattice, the presence or absence of isolated vacancies or dangling 
rows of vacancies does affect the connectivity of a square lattice. In an a3n diffusion 
process, site i (figure 7) would be occupied if an ant was placed at the lower right 
corner but in an a4n process it would not, and therefore pT(a3n) < p ?  (a4n). Similarly, 

0 . 0 0  0 0 . 0  

0 . 0 0  0 0 . 0  

O . . .  0 0 . .  

0 . 0 .  0 0 . .  

(a )  lbi 

Figure 7. ( a )  Configuration where site i could become occupied in a3n IJP but not in 
a4n DP. ( b )  Configuration where site j could become occupied in a4n DP but not in usual 
percolation. 

+ L* is the matching lattice to the lattice L, on which the bootstrap problem was defined. 
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in an a4n process site J would be occupied but in usual percolation it would not and  
hence pF(a4n) < pf(ss). We will present numerical estimates of p f ( a4n)  and pF(a3n) 
for the square lattice and  evidence to support the claims of pf = 0 in the following 
section. 

The numerical estimates will be obtained via a study of P ( p ,  L ) ,  the probability 
that a site on a lattice of linear size L, if occupied, belongs to the infinite cluster. For 
BP we calculate P ( p ,  L )  by filling sites with probability p ,  and then successively culling 
those that did not have the required m neighbours. For s2n DP (square lattice) we 
filled sites with probability p ,  and then achieved the same result that we would get by 
parachuting ants onto each cluster and allowing them to move until they could go no 
further ( t  =a), by 'completing the rectangle'. The 'completing the rectangle' algorithm 
simply means that we identify all clusters of nearest- and second-neighbour sites, and 
then if these sites have coordinates (x,, y , )  we find maximum and minimum values of 
x, and y ,  (xmax, x"", y""" and y"") for the cluster and  occupy all the sites with 
Xmln s x < Xmax, y"'" s y s ymdx, compact rectangles. This algorithm is also iterative, 
since two completed rectangles may overlap or have two sites that are second neigh- 
bours. Therefore, the process is repeated until no further sites are added. The sites 
thus occupied are exactly equivalent to all the sites that ants parachuted onto all the 
clusters could reach by t = 00. For other DP cases we made use of the duality relationship 
with the corresponding BP model to grow the clusters. 

We complete this section with a discussion of the similarities and differences between 
the percolation free energy k ( p )  (mean number of clusters), percolation probability 
P ( p )  and mean cluster size S ( p )  for BP and  DP, for cases where there are no finite 
clusters ( BP) and  holes ( DP). A schematic illustration of the correspondence between 
these cases is given in figure 8. This class includes all bootstrap models for which 
m > m, and their corresponding diffusion percolation cases. By observation, S ( p )  and 
k ( p )  are zero for all the bootstrap models, the former because there are no finite 
clusters anywhere and  the latter because there is only one infinite cluster and therefore 
the mean number of clusters tends to zero as system size tends to CO. For diffusion 
percolation, however, there are finite clusters for p < p ?  (and for at least one non-trivial 
case, a3n on the simple cubic lattice pF > 0) and thus k ( p ) ,  S ( p )  f 0 for p < p c .  This 
result indicates an  asymmetry in the bootstrap-diff usion correspondence due to the 
fact that holes and clusters are not equivalent. 

Id) le) if1 

Figure 8. Schematic correspondence between BP and DP for cases of first-order transitions. 
( 0 )  BP, P < P < .  ( b )  BP, p > p c  (p,<11; ( c 1  BP, p = p c = l ,  ( d )  DP, p > p T ;  ( e )  DP, p<pT  
( p T  > 0);  (f) DP, p = p t  = 0. 
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3. Numerical simulations 

In this section we present the results of simulations where either first- or second-order 
transitions are expected. Both cases are analysed with finite-size scaling which is 
discussed in detail in appendix 2 .  In the appendix we review the results for finite-size 
scaling for a second-order percolation transition and show that these are exact for 
d = 1, m = 1 BP and for BP in the case where m = z, the coordination number of the 
lattice. Both d = 1 percolation and m = z BP have first-order phase transitions and we 
may thus expect that the finite-size scaling analysis will hold for other first-order BP 

and DP transitions. In order to carry out the finite-size scaling, we evaluate P ( p ,  L ) ,  
the percolation probability for a lattice of size L for different values of L, and measure 
the width, W ( L ) ,  of this curve. Details of the method by which v and p c  are deduced 
from these data are given in appendix 2. 

We begin with a study of P ( p ,  L )  for those cases where a first-order transition is 
expected. The cases considered are s2n DP on the square lattice (400' sites) and 
m = 3 ( d  = 2 ,  5002 sites), m = 4, 5 (d  = 3, 503 sites) and m = 7 ( d  = 4, 124 sites) BP  on 
hypercubic lattices. With the exception of m = 4 (d  = 3) BP those systems are all 
expected to exhibit large void/cluster instabilities in the infinite system. It is unclear 
how large samples must be to exhibit these, but they should probably be considerably 
larger than the simulations usually made, since to obtain p c  = 1.000 one would need a 
large void instability to occur in every sample. Since experimental crack systems to 
which we wish to apply diffusion percolation are not infinite, we turn our attention to 
evaluating p *  for those systems which do  not exhibit large void instabilities and to 
evaluating p:  for those that do. We note that in the cases studied in appendix 2 there 
certainly are large void instabilities present, but in these cases they are so dominating 
that they are seen on all sample sizes and thus p c  can be easily calculated. The 
problematic cases are those where samples must be very large for the void instabilities 
to manifest themselves. We also wish to see if we can observe indications of the 
expected first-order transitions from the Monte Carlo data for the models we study. 
We used periodic boundary conditions in all cases, in order to speed convergence, 
and averaged over 50- 100 lattice realisations. 

We present data from several simulations in figures 9-11. The data include graphs 
of the percolation probability P ( p ,  L )  for different system sizes L and various graphs 
describing the analysis of P ( p ) .  A discussion of the type of analysis used is given in 
appendix 2. 

Figure 9 contains the data for the two-dimensional models with expected first-order 
transitions. In figure 9 (a )  we present P ( p ,  L )  curves for s2n DP and in figure 9(b) we 
present graphs of the width W ( L )  against system size on a log-log scale for s2n DP 

and m = 3 BP. Comparison slopes with v = (d = 2, second-order transition) and v = f 
(to be expected for a first-order one) are given for clarity of interpretation. We observe 
that v = $ appears to be consistent with the data, and we shall discuss this further in 
the next section. There is no conclusive evidence of a crossover to a slope of v = +, 
although preliminary data do suggest such a crossover for L >  100 (Adler and Aharony 
1986); the preliminary data were taken on the same 50 lattices for each p c  value whereas 
in the final data a different set of 100 lattices was used for each point. We note with 
satisfaction the strong similarity between the m = 3 BP and s2n DP, confirming that they 
are in the same universality class as expected. Figure 9 (c )  contains plots ofp;, against 
W (  L )  for different L values. Again the DP and B P  curves appear similar. We extrapolate 
p;,, = 0.965 *0.003 for m = 3 BP and pFo = 0.065 * 0.015 for s2n DP for large L values. 



Diffusion percolation: I 1397 

c 

t 

L 
0 

0 

i 

I I 



1398 J Adler and A Aharony 

t 

1 
I 

0 , o  
.n 0 
m d .3 

m 
0 U. 0 

I 1 ' 1  I 

I' 
I 

I I 

. x  

-m 

-- I 
6 
0 

7 
0 

l71M 



Difusion percolation I 

I 0.41 1 I I 1 

1399 

0.535 

L 

I I I I I I 

t 
b 

a m -  

t 

i 
10.550 

W ( L )  

Figure 11. Data for d = 2 DP with second-order transitions on the square lattice. ( a )  W ( L )  
for a3n (+) and a 4 n ( 3 )  DP; comparison slope: v = z ;  ( 6 )  p1; estimates for a3n (0) and 
a4n (m) DP. 

We note that p $  for a2n D P  would be expected to be greater than 1 - 0.965 * 0.005 = 
0.035 * 0.015 which is much less than 0.065 * 0.015 as expected, since s2n diffusion 
clusters grow more slowly than a2n ones. We may compare the m = 3 BP numbers with 
the results of the renormalisation group study of Branco et a1 (1986). They work with 
small cells (thus their calculation cannot include the effects of the large void 
instabilities), and obtain pc(m = 3 BP) =0.956, 0.931, 0.918, 0.834 or 0.873 for different 
scale factors. Their first value is in good agreement with our py0 = 0.965 as would be 
expected. 
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The data for the three- and four-dimensional models with expected first-order 
transitions are given in figure 10. In figure lO(a) we present P ( p ,  L )  curves for m = 4 
( d  = 3) BP, where there are no large void instabilities and thus p c <  1. In  figure 10(b) 
we plot W (  L) against L for m = 4( d = 3) BP, m = 5 (  d =  BP and m = 7( d = 4) BP. For 
the d = 3 cases W (  L )  L-””  with v taking the second-order transition value, 0.88. Plots 
of pko against W ( L )  are presented in figure 1O(c) and for m = 4(d = 3) we find 
p~o=pc=0.896*0.010, just at the bottom of Kogut and Leath’s (1981) range of 
p c  = 0.902’: :::. For the m = 7(  d = 4) BP graph of figure 10( 6) we observe that the slope 
measured over all four points is 1/ v = 2.0+ 0.5, but if we consider the last two we find 
l /v=3.4+0.18 and the first three alone give l / v  = 1.6k0.5. These values are compat- 
ible with a crossover from the second-order value of 1.49 (de Alcantara Bonfim et a1 
1981) to the first-order value of 1/ v = 4.0. 

Results for DP systems on the square lattice with second-order transitions are given 
in figure 11. The statistics here are only 60 lattices per point, as one expected better 
convergence. In figure 11( a )  W (  L )  is plotted against L for a3n and a4n DP. The slope 
gives v = 1.1 +0.2 for a4n DP and v = 1.3 +0.2 for a3n DP. Figure 11( 6) contains 
extrapolations of p i o  against W results to give the first p ?  estimates for these two 
systems. We find 

p?=O.551*0.004(a4n~p) 
p ?  = 0.423 2 0.004 (a3n DP). 

In 0 2 we deduced that both these p :  values must be greater than 1 - p c  (usual 
percolation) = 0.4073 (Rappaport 1985) for this lattice, and this inequality is clearly 
satisfied here. 

4. Discussion 

We have introduced a new percolation process, diffusion percolation ( DP), and estab- 
lished the connection between DP and bootstrap percolation (BP). We note that this 
connection is similar to that between invasion percolation (Wilkinson 1983) and 
invasion percolation with trapping (Newman 1986 private communciation). A similar 
duality connection does not seem to exist between DLA and anti-DLA (Paterson 1987). 
Exact results for both DP and BP have been developed. Numerical simulations of 
several different cases have been made, which confirm that the corresponding DP and 
BP have the same critical behaviour. We have confirmed our prediction of v = l / d  in 
four dimensions, for first-order transitions, but failed to see clear evidence of any 
crossover to this behaviour in d = 2 or d = 3. This presumably means that we have 
not considered sufficiently large lattices. We hope to remedy this in the future. For 
the second-order DP processes in two dimensions we found new p c  values and v values 
that are consistent with the usual percolation value. This is to be expected from the 
BP-DP correspondence and the observation that v in percolation depends on the 
geometry of the infinite cluster, which is the same for m = 0, 1 and 2 BP. 

A summary of the correspondence between DP and BP with p c  and p ?  estimates is 
given in figure 12. 
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Appendix 1. Bootstrap percolation 

Bootstrap percolation (Chalupa er a1 1981, Kogut and  Leath 1981, Branco et a1 1986, 
Khan eta1 1985 and references therein) is a percolation model wherein all sites with 
less than m neighbours are successively culled from the lattice. For m = 0, we have 
usual percolation. For m = 1 or 2 we have the same p c  as for usual percolation, although 
the cluster statistics will vary since in both cases isolated sites, and  in the m = 2  case 
sites connected to dangling bonds, will be removed. For m = z (the coordination 
number of the lattice), on the other hand, pc  = 1.0 since any absent site will mean that 
its neighbours do not have z neighbours and  thus unless the lattice is completely full 
no sites will survive the culling. In this case the transition is first order, as in d = 1 
percolation. For intermediate rn values, there are two possibilities: if m > mu then by 
Straley’s argument (described in Kogut and  Leath (1981) and  rigorised by van Enter 
(198711, of large void instabilities, p c  = 1. For 2 < m < mu there will be a transition at  
some p c <  p c ( m )  < 1. If mu > m > m ,  there will be no finite clusters and  the transition 
will be first order. We define mu as the smallest m for which p c =  1 and m, as the 
smallest m for which the transition is first order. 
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Table 2. p c  estimates. 

m 

0 1 2 3 4 5 6 

D = l  p c =  

D = 2  

Square 
ml=3 p c =  
m,, = 3 

Triangular 
m , = T  p c =  
m,, = 4  

PTO = 

P% = 

D = 3  
Simple cubic 
m,=4 p c =  
m,, = 5  p c =  

1 1 1 

0.5927" 0.5927" 0.5927" 1' l h  
0.83 0.96' 
0.965 * 0.005'' 

I 1 1 
2 T 0.606' 

0.60 0.76' 
0.628 i 0.02' 

0.81 0.89' 0.96 1.0' 

0.31168 0.31168 0.3116g 0.56Sb 0.902' 1 
0.896 f OIOd 

a Rappaport (1985). 
Kogut and Leath (1981); error bars are -0.005. 
Branco er al (1986). 

*This work. 
e ml is probably 4 but there is no proof that the m = 3 transition is second order. 

Khan e t a /  (1985). 
Stauffer and Zabolitzky (1986). 

A summary of m,, mu and p c  values from previous and parallel studies is given in 
table 2 for bootstrap percolation on several common lattices. In the case m > mu, 
small samples fail to show any sign of the large void instabilities. It is therefore possible 
to define a quantity pk0 which is the concentration at which 50% of lattices of size L 
percolate. In the thermodynamic limit L +  00, pko would tend to pc  and by the large 
void instability argument Pko + 1 if m > mu. However, for a finite system the behaviour 
of Pk, for large L is a useful measurement and by arguments given in 0 3 some systems 
of interest are not believed to have the L = 00 behaviour. We call the large L value of 
p i o ,  pFo. This quantity is equal to p c  in the case of second-order transitions, first-order 
transitions without large void instabilites and the cases discussed in appendix 2. It is 
also possible to consider variants of bootstrap percolation, for example percolation 
where the neighbours of a site must be neighbours of each other (Adler er a1 1987). 

We note that the behaviour of pko as L+co has been considered by Lenormand 
and Zarcone (1984) for another model with large cluster instabilities. They estimated 
that pT = K/log L for asymptotically large L, and found K = 0.33 from numerical 
simulations. 

Appendix 2. Exact results 

We consider below some exact results in the infinite time limit for BP/DP m = z and/or 
d = 1. For a first-order transition one expects (Nienhuis and Nauenberg 1975, Fisher 
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and Berker 1982) U = l /d .  For the usual second-order percolation transition (Stauffer 
1985), we know that the width, W ( L ) ,  of the percolation probability P ( p ,  L )  (defined 
as the probability that if a given site is occupied it is part of the incipient infinite 
cluster in a system of linear dimension L )  scales as L-"" and so does p k o - p c  where 
p t  is the concentration at which x0/o of the samples of size L are connected in all 
directions. We measure W ( L )  by either p k 0 - p : ,  or p to -pk0 .  

These various quantities are illustrated schematically in figure 13. We may use the 
fact that W ( L )  and p i o - p c  both have the same U dependence as a function of L to 
deduce p c  from the intercept of a plot of pko against W (  L) .  We have no rigorous proof 
that the same finite-size scaling will work for a first-order transition, but we show 
below that W ( L )  - L-"" for first-order transitions in d = 1 and when m = z. 

w l  
/-- 

I I ,  I I ;  I I '  

0 'KP2C ' 5 ,  P80 'K 1:O 
I I  

P 

Figure 13. P ( p ,  L), the percolation probability, for a system of size L (schematic diagram). 

We note that it will become necessary in certain cases to distinguish between the 
true p c  or  p ?  of a system and  the result of the extrapolation of p i o  to very large sample 
sizes. In these cases we have called the numerical extrapolation of pko, p:). It should 
also be noted that a real-space RG study would estimate p z  and not the true p c  in 
these cases. 

We begin with a consideration of d = 1. For m = 1 BP and its corresponding model 
a2n DP we have no single site clusters (or single vacant sites if ants are parachuted 
onto all clusters) but otherwise the transition and  cluster distribution are not very 
different from usual I D  percolation. For m = 2 B P  and a l n  DP, the cluster size distribu- 
tions are quite different. There are no finite clusters in the BP case for p < pc = 1 and 
if ants are parachuted onto all clusters in the a l n  diffusion then every lattice site is 
occupied for p > 0. All these transitions are first order and p c  = 0 or 1.0. 

For m = 2 BP we now look at a set of imaginary simulations of samples of different 
lengths L. There will be p L  occupied sites, all of which will be part of the infinite 
cluster. If p L  < 1 or p < 1/ L, then P ( p ,  L) = 0. The probability that P ( p ,  L )  = 1 is p L ,  
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therefore P ( p ,  L )  = p L  or p = P ( p ,  L ) L / 2 .  Thus 

W (  L )  = pk0 -pk0 = 0.9'/L - 0.1'lL 

exP"/L'nO.') ( l / L I n 0 . 9 ) -  = exp 

= 1/L ln(0.9/0.1) 

= I /  L In 9 - L:' 

and pko = We know that p c  = 1, thus p k o - p c -  1/ L = In 0.5 - L-' .  These results 
imply that v = 1, as expected for a first-order transition in one dimension, and suggest 
that we may use a graph of W (  L )  against p i o  on a linear scale to determine p c ,  exactly 
as for a second-order transition. The extrapolation may or may not be linear. 

These results can be extended to general dimension, for the case where m is equal 
to the coordination number of the lattice, z, and p c  = 1. Here P ( p ,  L )  = 1 with probability 
p L d  and therefore 

W ( L )  =pg ' -pko=  (O.9)llLd -(O.1)'lLd 

= l / L d  1119- L-d 

and p k o - p c -  L-d.  This implies 1/ v = d as expected. 
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